Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method
نویسندگان
چکیده
منابع مشابه
Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method
[1] We introduce the application of an arbitrary high-order derivative (ADER) discontinuous Galerkin (DG) method to simulate earthquake rupture dynamics. The ADER-DG method uses triangles as computational cells which simplifies the process of discretization of very complex surfaces and volumes by using external automated tools. Discontinuous Galerkin methods are well suited for solving dynamic ...
متن کاملRunge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...
متن کاملA discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes
In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive GreenNaghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the ...
متن کاملRunge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes
In this paper we generalize a new type of compact Hermite weighted essentially nonoscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) methods, which were recently developed in [34] for structured meshes, to two dimensional unstructured triangular meshes. The main idea of this limiter is to reconstruct the new polynomial using the entire polynomials of the DG solution f...
متن کاملRunge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research
سال: 2009
ISSN: 0148-0227
DOI: 10.1029/2008jb006271